

Ripin Checker, Product Manager, Cisco Systems rchecker@cisco.com

© 2004, Cisco Systems, Inc. All rights reserved.

**MPLS Japan 2004** 

## **Agenda for Today**

- Drivers for MPLS Management
- Technical Requirements
- Update on IP/MPLS Tools
- Summary

#### **Service Provider Network Operation**



- Create operational efficiencies and increase automation in a highly technology-intensive market
- Enable competitive differentiation and customer retention through high-margin, bundled services
- Progressively consolidate disparate networks
- Sustain existing business while rolling out new services

#### **MPLS Services and Transport Network Management**

dilling Cisco.com



#### **MPLS Service Provisioning Challenge**

Cisco.com

#### **Challenges in VPN Service Provisioning**



#### Source: Infonetics, 2003

#### Service Provider CapEx vs. OpEx

#### Cisco.com

- CapEx typically follows the economy
- OpEx is consistent

- Typical ratio of a Tier 1 carrier CapEx vs, OpEx spending
- OpEx efficiencies have higher profitability and a higher ARPU





Quarterly Spending Source: Typical Incumbent Carrier Balanced Sheet, Frost & Sullivar

#### **Intelligent Information Networks**

Complex networks require simplification through Management



#### A Sample of Typical SP Customer Concerns

- With all the flow through provisioning the most complicated part is to make sure that the configuration has worked
- Solving MPLS VPN connectivity problems is a complex task for CCIEs
- Is QOS configuration network specific or service specific and is complicated to manage and troubleshoot
- Troubleshooting performance degradation in MPLS/IP networks is the most labor intensive NOC activity
- How do I transition PVCs from our ATM core to IP/MPLS infrastructure and that too in a Multi-Vendor Network
- Can you help me get better use of IP/MPLS core particularly increased use of existing network bandwidth resource

#### **Customer Requirements - Fault**

Cisco.com

#### **Fault Detection and Isolation**

-Control Plane Verification

-Consistency check

-Authentication

-Data Plane Verification

-Ability to verify connectivity and trace

Paths from PE to PE – Global routing table as well as VPNs

Paths from CE to CE within a VPN

TE tunnels

**Pseudo-wires** 

Data plane OAM packets must follow same path they are testing!

# Customer Requirements – Fault (Continued)

- Need for Fault management functions at all layers Device, Network, Service, EMS, Partners
- Provide Reactive and Proactive Fault Mgt tools
- Ability to identify specific service failure to a node or line card failure
- Interwork with other technology fault management tools to provide end-to-end fault correlation – OAM Interworking

# Customer Requirements –Configuration/Provisioning

- Configure OAM functions on the network devices depending on the PE, P, Managed CPE roles
- Verification of Service after Configuration
- Alarm Mapping configuration
- Automate OAM functionality for pro-active monitoring
- Large Scale Service Provisioning
- Standards based interfaces to devices SNMP, Programmatic Interface

## Customer Requirements – Accounting/Performance

- MPLS Flow accounting with label stack information
- Flexible and extensible export format Netflow v9
- Measurement of Key end-to-end MPLS performance statistics like – Network delay, Packet Loss, Jitter, Connectivity
- Proactive Performance measurement by raising triggers based on events like Connection loss/Timeout, RTT threshold etc
- Historical and Real time MPLS statistics

#### **Basics: VCs & LSPs**

#### **Virtual Circuits**

#### **Label Switched Paths**

| <b>Bi-directional</b>                          | Usually Uni-directional                      |
|------------------------------------------------|----------------------------------------------|
| Established via ATM<br>Signaling or Management | Establishment tied closely to control planes |
| Fixed hierarchy VP/VC                          | Variable Label Stack                         |
| <b>Connection oriented</b>                     | Can be "connectionless"                      |
| Single route                                   | May use ECMP                                 |
| No penultimate popping                         | Penultimate hop popping                      |

## **IP Troubleshooting Tools**

- Based on ICMP Echo Request and Reply
  - IP Ping
  - IP Traceroute
  - VRF Ping
  - VRF Traceroute
- Issues with ICMP Ping for MPLS network
  - Different behavior based on IP or MPLS core
  - Does not detect MPLS data plane failure if IP layer works fine
  - Does not provide sufficient reply data to isolate fault to MPLS specific issue

## **MPLS LSP Ping/Traceroute**

| Requirement       | <ul> <li>Detect MPLS traffic black holes or misrouting</li> <li>Isolate MPLS faults</li> <li>Verify data plane against the control plane</li> <li>Detect MTU of MPLS LSP paths</li> </ul> |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solution          | <ul> <li>MPLS LSP Ping for connectivity checks</li> <li>MPLS LSP Traceroute for hop-by-hop fault localization</li> <li>MPLS LSP Traceroute for path tracing</li> </ul>                    |
| Applications      | <ul> <li>IPv4 LDP prefix, VPNv4 prefix</li> <li>TE tunnel</li> <li>MPLS PE, P connectivity for MPLS transport, MPLS VPN, MPLS TE applications</li> </ul>                                  |
| IETF<br>Standards | Draft-ietf-mpls-lsp-ping-06.txt                                                                                                                                                           |

#### LSP Ping/Traceroute Example



#### MPLS AToM Virtual Circuit Connection Verification (VCCV)

|                | Cisco.com                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Requirement    | <ul> <li>Ability to provide end-to-end fault detection and diagnostics<br/>for an emulated pseudowire service</li> <li>One tunnel can serve many pseudowires.</li> <li>MPLS LSP ping is sufficient to monitor the PSN tunnel (PE-PE<br/>connectivity), but not VCs inside of tunnel</li> </ul>                                                                                               |  |  |
| Solution       | <ul> <li>AToM VCCV allows sending control packets in band of an AToM pseudowire. Two components:</li> <li>Signaled component to communicate VCCV capabilities as part of VC label</li> <li>Switching component to cause the AToM VC payload to be treated as a control packet</li> <li>Type 1: uses Protocol ID of AToM Control word</li> <li>Type 2: use MPLS router alert label</li> </ul> |  |  |
| Applications   | • Layer 2 transport over MPLS<br>FRoMPLS, ATMoMPLS, EoMPLS                                                                                                                                                                                                                                                                                                                                   |  |  |
| IETF Standards | • Draft-ietf-pwe3-vccv-xx.txt                                                                                                                                                                                                                                                                                                                                                                |  |  |

#### **Troubleshooting - VRF data plane**



#### MPLS Traffic Engineering: AutoTunnel – Primary, Backup, & Mesh Groups

| Requirement    | <ul> <li>Ability to protect links and nodes with no requirement of "traffic engineering"</li> <li>Need to ease configuration of "increased bandwidth inventory" MPLS TE designs such as full mesh</li> </ul>                                                                                                                                                                        |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Solution       | <ul> <li>Backup AutoTunnel—Enables a router to dynamically build<br/>backup tunnels</li> <li>Primary one-hop AutoTunnel—Enables a router to dynamically create<br/>one-hop primary tunnels on all interfaces that have been enabled with<br/>MPLS TE tunnels</li> <li>Mesh Group AutoTunnel – Enables automatic establishment of full- or<br/>partial-mesh of TE tunnels</li> </ul> |  |  |  |
| Applications   | <ul> <li>MPLS VPN with multiservice SLAs (voice, video, and data sites)</li> <li>MPLS AToM-based Layer 2 services with "Bandwidth Assurances"</li> <li>Enhanced SLA service offerings with low packet loss during failure condition – "Bandwidth Protection"</li> </ul>                                                                                                             |  |  |  |
| IETF Standards | <ul> <li>draft-ietf-mpls-rsvp-lsp-fastreroute-03.txt</li> <li>draft-ietf-ospf-cap-01.txt</li> <li>draft-vasseur-mpls-ospf-te-cap-xx.txt</li> </ul>                                                                                                                                                                                                                                  |  |  |  |

#### MPLS Traffic Engineering AutoTunnel – Primary & Backup

Cisco.com

Router A establishes AutoTunnels to adjacent routers – "automates" configuration of Link & Node Protection



#### MPLS Traffic Engineering AutoTunnel – Mesh Groups

Routers A, B, C, D, E – defined as members of "Mesh Group 1" Capable of building multiple meshes for DiffServ aware Traffic Engineering Automates configuration of full mesh of TE Tunnels resulting in operational efficiencies



### **BFD for MPLS LSPs**

Low-overhead, shortduration failure detection in the path between adjacent forwarding engines

Including the interfaces, data link(s), & forwarding planes

- There is no discovery mechanism in BFD
- Need a means to bootstrap



- In some cases carriers would like to monitor LSPs
  Accomplished with a TLV in LSP
- Ping that carries the BFD discriminator
- Applications BFD+LDP, BFD+VCCV, BFD+TE, BFD+BGP, BFD+IGP

# MPLS Network and Services MIB Summary and Concept/ Architecture/Dependencies



## **Putting It All Together**

| Media type                         | CC CP                                | CC DP       | Loopback    | Performance | Traceroute |  |
|------------------------------------|--------------------------------------|-------------|-------------|-------------|------------|--|
| ATM VP                             | II MI                                | F4 (VC-3)   | F4 (VC-4)   |             | -          |  |
| ATM VC                             |                                      | F5 (PT 100) | F5 (PT 101) |             | -          |  |
| FR                                 | LMI                                  | Keepalive   | -           | -           | -          |  |
| Ethernet<br>last mille<br>Ethernet | EEE 802.3ah ITU-T Draft Y.ethoam     |             |             |             |            |  |
| provider bridge                    | IEEE 802.1ag (MAC: broadcast domain) |             |             |             |            |  |
| MPLS LDP                           | LDP Hello                            | MPLS RED    | ITU-T Dr    | aft Y.17fw  | I AP TR    |  |
| MPLS TE                            | RSVP Hello                           |             |             |             |            |  |
| MPLS PW                            | LDP Hello                            | VCCV BFD    | VCCV Ping   | -           | -          |  |
| IPv4                               | IGP/BGP Hello                        | BFD         | IP Ping     | -           | IP TR      |  |

#### •OAM Interworking for End-to-End Network and Service Level OAM •Not just Vendor Interoperability but Standards alignment as well

# MPLS Network Management Life Cycle





- Cost pressures driving convergence, consolidation and virtualization
- Complexity of networked systems and scarce expertise are increasing Total Cost of Ownership (TCO)
- MPLS Network management require systems and solutions perspective
- Standards-based open interfaces for easier and faster integration



Cisco.com

# **CISCO SYSTEMS EMPOWERING THE** INTERNET GENERATION