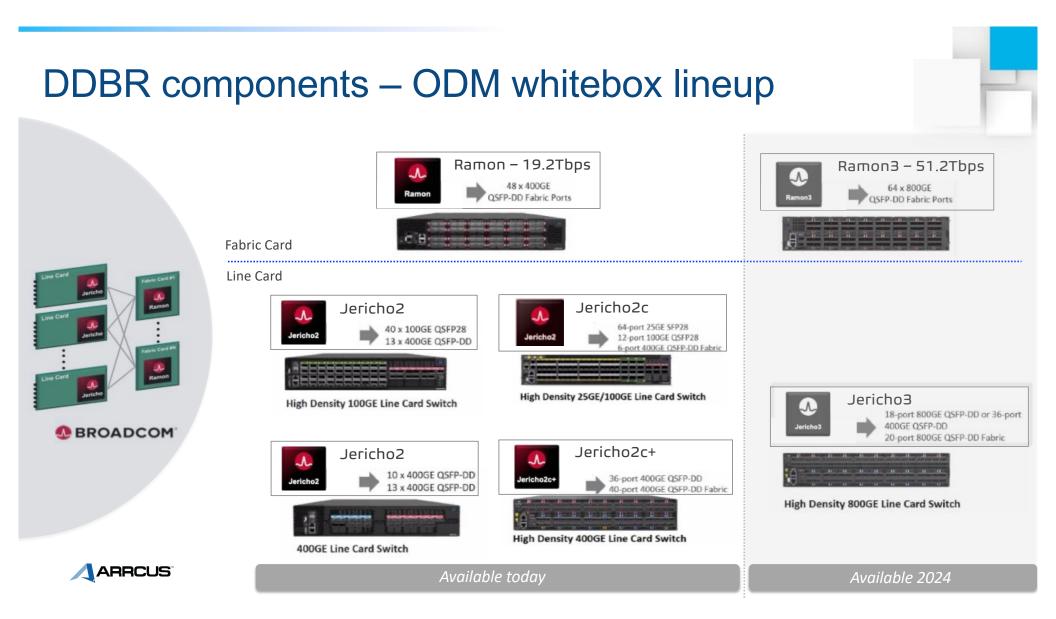

ソフトウェアから見た Disaggregated Distributed Backbone Router (DDBR) へのチャレンジ

Tetsuya Murakami October 26 2023


Confidential | ©2023 Arrcus

DDBR Architecture – Flexibility & High Scalability

Breaking the scale barrier: up to 7,680 x 100GE ports

ODM hardware – Fabric Card UfiSpace S9705-48D

- Broadcom Ramon ASIC
- Intel Broadwell-DE processor
- 48x400GE (fabric)
- DDBR's Backplane Switch Fabric

SPECIFICATIONS

PHYSICAL

48 x 400GE QSFP-DD fabric ports

- 1 x RJ45 + Micro USB serial console ports
- 1 x 1GBase-T Ethernet port for Out-of-Band management
- 1 x USB 2.0 Type-A general purpose port
- 2 x 10GBase-X SFP+ management ports

Processor	Intel Broadwell-DE 8 core @ 2.0 GHZ
Memory	2 x 32GB DDR4 RDIMM with ECC support
Storage	2 x M.2 SATA SSD 128GB
ASIC	Broadcom Ramon BCM88790
LED	Power status Fan status System status Per port link status Beacon Per fan status Per PSU status
Chassis (WxDxH)	2RU, 436 x 762 x 87.6 mm 17.17 x 30 x 3.45 in. Welght: 24.9 kg (54.9 lbs)
Redundancy	Hot swappable, 1+1 redundant PSU Hot swappable, 3+1 redundant fans

ENVIRONMENTAL

Power Supply	AC Input: 200 ~ 240V, 12.5A, 50 ~ 60Hz		
	DC input: -40 ~ -72V, 60 ~ 33A		
	Typical power: 980 Watts (no transceiver)		
Max. Operating	Operating temperature: 0°C to 45°C (32°F to 113°F)		
Specs.	Operating humidity: 5% to 85% (RH), noncondensing Ititude: 1,829 m (6,000 ft.)		
Max. Non-Operating	Storage temperature: -40°C to 70°C (-40°F to 158°F)		
Specs.	Storage humidity: 5% to 95% (RH), non-condensing		

PERFORMANCE

Switching Capacity 4.8 Tbps

Packet Throughput 8 billion cells

REGULATORY COMPLIANCE

Safety	NEBS Level 3	EMC	NEBS Level 3
	UL 62368-1		FCC Part 15, Subpart B,
	IEC/EN 60950-1		Class A EN 55032, Class A
	IEC/EN 62368-1		EN 300 386
BSN	BSMI CNS 14336-1		EN 55024 EN 55035
			BSMI (CNS 13438), Class A
			VCCI-CISPR 32:2016, Class A
			VCCI 32-1:2016, Class A

Specifications are subject to change without notice.

Arrcus, Inc 2022 Confidential Material under NDA

ODM hardware – Line Card or Standalone

UfiSpace S9700-53DX

High Density 100GE

- Broadcom J2 ASIC
- Intel Broadwell-DE processor
- Access ports: 40x100GE
 - or 80x10/25GE w/ breakout
- Fabric ports: 13x400GE
- Switching capacity 4.8Tbps
- Large routing table
- 8GB deep packet buffer
- Redundant PS and fans

SPECIFICATIONS

PHYSICAL

 40 x 100GE 	QSFP28 service ports
• 13 x 400GE	QSFP-DD fabric ports
• 1 x RJ45 + N	licro USB serial console ports
• 1 x 1GBase-	TEthernet port for Out-of-Band management
• 1 x USB 2.0 1	Type-A general purpose port
• 2 x 10GBase	-X SFP+ management ports
Processor	Intel Broadwell-DE 8 core @ 2.0 GHZ
Memory	2 x 32GB DDR4 RDIMM with ECC support
Storage	2 x M.2 SATA SSD 128GB
ASIC	Broadcom Jericho2 BCM88690
LED	Power status Fan status System status Per port link status Beacon Per fan status Per PSU status
Chassis (WxDxH)	2RU, 436 x 762 x 87.6 mm 17.17 x 30 x 3.45 in. Weight: 26.7 kg (58.9 lbs)
Redundancy	Hot swappable, 1+1 redundant PSU Hot swappable, 3+1 redundant fans

ENVIRONMENTAL

Power Supply	AC input: 200 ~ 240V, 12.5A, 50 ~ 60Hz		
	DC input: -40 ~ -72V, 60 ~ 33A		
	Typical power: 750 Watts (no transceiver)		
Max. Operating	Operating temperature: 0°C to 45°C (32°F to 113°F)		
Specs.	Operating humidity: 5% to 85% (RH), noncondensing Ititude: 1,829 m (6,000 ft.)		
Max. Non-Operating	Storage temperature: -40°C to 70°C (-40°F to 158°F)		
Specs.	Storage humidity: 5% to 95% (RH), non-condensing		

PERFORMANCE

SI

Sa

witching Capacity	4.8 Tbps	
acket Throughput	2000 Mpps	

REGULATORY COMPLIANCE

fety	NEBS Level 3	EMC	NEBS Level 3
	UL 62368-1		FCC Part 15, Subpart B,
	IEC/EN 60950-1		Class A EN 55032, Class A
	IEC/EN 62368-1		EN 300 386
	BSMI CNS 14336-1		EN 55024 EN 55035
			BSMI (CNS 13438), Class A
			VCCI-CISPR 32:2016, Class A
			VCCI 32-1:2016, Class A

Specifications are subject to change without notice.

Arrcus, Inc 2022 Confidential Material under NDA

ODM hardware – Line Card

UfiSpace S9700-23D

400GE Line Card

- Broadcom J2 ASIC
- Intel Broadwell-DE processor
- Access ports: 10x400GE
 - or 40x100GE w/ breakout
- Fabric ports: 13x400GE
- 400GE ZR support
- Switching capacity 4.8Tbps
- Large routing table
- 8GB deep packet buffer
- Redundant PS and fans

SPECIFICATIONS

PHYSICAL

- 10 x 100/400G QSFP-DD service ports
- 13 x 400G QSFP-DD fabric ports
- 1 x RJ45 & Micro USB serial console ports
- 2 x 10GBase-X SFP+ management ports
- 1 x 100/1000M RJ45 management port
 1 x USB 2.0 Type-A port
 Processor Intel Broadwell-DE 8-Core @ 2.0GHz
 Memory 64GB DDR4
 Storage 256GB SSD
 ASIC Broadcom Jericho2 BCM88690
 Broadcom OP2 BCM16K
 BMC AST2400
- LED
 Power status
Fan status
System status
Per port link status
Beacon
Per fan status
Per PSU status

 Chassis
 2RU, 436 x 762 x 87.7 mm
or 17.17" x 30" x 3.45"
Weight: 18.77kg or 41.38lb

 Redundancy
 Hot swappable, 1+1 redundant PSU
 - Hot swappable, 1+1 redundant PSU Hot swappable, 3+1 redundant Fans

ENVIRONMENTAL

DC input: -4			10 to 240V, 12.5A 0 to -72V, 60A er: 283 Watts (no transceiver)		
Max. Operating Specs.	Operating temperature: 0°C to 45°C (32°F to 113°F) Operating humidity: 5% to 85% (RH), non-condensing				
Max. Non-Oper Specs.	rating	Storage temperature: -40°C to 70°C (-40°F to 158°F) Storage humidity: 5% to 93% (RH), non-condensing			
PERFORM	ANCE				
Switching Cap	bacity	4.8Tbps			
Deep Buffer		8GB			
REGULATORY COMPLIANCE					
Safety	UL 6236 IEC 6236 BSMI NOM		EMC	FCC Part 15, Subpart B, Class A ICES-003, Class A EN 55032, Class A EN 55035 EN 62479 EN 50663 EN 300 386	
Environment	RoHS	IEBS Level 3		EN 301 489 EN 303 413 BSMI VCCI CISPR 32, Class A AS/NZS CISPR 32, Class A	

Specifications are subject to change without notice.

NEBS GR-1089, NEBS Level 3

ANATEL

ODM hardware – Line Card

UfiSpace S9710-76D

High Density 400GE Line Card

- Broadcom J2c+ ASIC
- Intel Skylake-D processor
- Access ports: 36x40/100/400GE
- Fabric ports: 40x400GE
- 400GE ZR and OpenZR+ support
- Switching capacity 14.4Tbps
- Large routing table -
- 16GB deep packet buffer
- SyncE and IEEE1588v2
- Redundant PS and fans

SPECIFICATIONS

PHYSICAL

- 36 x 40/100/400G QSFP-DD service ports supporting 400ZR and OpenZR+
- 40 x 400G QSFP-DD fabric ports
- 1 x RJ45 & Micro USB serial console ports

management port port el Skylake-D 8-Core @ 1.9GHz 58 DDR4 5GB SSD adcom Jericho2c+ BCM88850 adcom OP2 BCM16K (Premium)
el Skylake-D 8-Core @ 1.9GHz 5B DDR4 5GB SSD adcom Jericho2c+ BCM88850
5B DDR4 5GB SSD adcom Jericho2c+ BCM88850
sGB SSD adcom Jericho2c+ BCM88850
adcom Jericho2c+ BCM88850
T2400
10MHz input/output SMB 1PPS input/output SMB
atum 3E OCXO -T Synchronous Ethernet (SyncE) E 1588v2 (Default Profile, 265.1 G8275.1, G.8275.2 profiles) C, T-BC/OC
U, 436 x 762 x 87.7 mm 17.17" x 30" x 3.45" ight: 26.95kg or 59.41lb
t-swappable, 1+1 Redundant PSU t-swappable, 3+1 Redundant fans

ENVIRONMENTAL

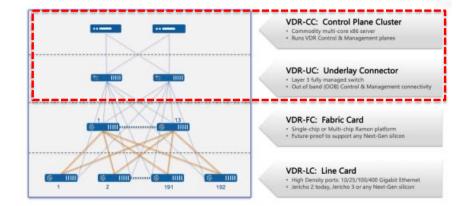
Power Specs.	AC input: 200 to 240V, 16A		
	DC input: -40 to -72V, 80A		
	Typical power: 667 Watts (no transceiver)		
Max. Operating	Operating temperature: 0°C to 45°C (32°F to 113°F)		
Specs.	Operating humidity: 5% to 85% (RH), non-condensing		
Max. Non-Operating	Storage temperature: -40°C to 70°C (-40°F to 158°F)		
Specs.	Storage humidity: 5% to 93% (RH), non-condensing		

PERFORMANCE

Switching Capacity	14.4Tbps
Deep Buffer	16GB

REGULATORY COMPLIANCE

Safety	UL 62368-1 IEC 62368-1 BSMI CNS 15598-1	EMC	FCC Part 15B, Subpart B, Class A ICES-003, Class A EN 55032, Class A EN 55024
			EN 55035 EN 62479
Environment	WEEE RoHS		EN 50663 EN 300 386 EN 301 489 EN 303 413 BSMI CNS 15598-1 VCCI CISPR 32, Class A


OP2 available for premium SKU only

Arrcus, Inc 2022 Confidential Material under NDA

Specifications are subject to change without notice.

Compute Server & Underlay Connector

- CS (Compute Server)
 - x86 Server 20-core CPU, 128GB RAM
 - 2x NVMe SSD RAID 1 storage
 - NIC:
 - Intel X710 10GE NIC
 - Intel E810 100GE NIC
 - Mellanox ConnectX-6 DX

- UC (Underlay Connector):
 - Broadcom Trident3 switch
 - Quanta IX8A

a second a second		5555 6555 6555 6555
	sup17 sup19	sup49 sup51 sup51
states where shows show any state where a state	والمروافي والمروافي والمروافي والفروافي أوافي والفروافي والمروافي والفرواف والمروا	
	swp18 swp20	supso e a supso

DDBR is ready?

• Hardware design is fully defined.

However,

- Software design/architecture is very unclear.
 - No available open source Can't try DDBR easily.
 - No suitable Operating System.
 - Need to design/develop software from the scratch.
 - There are several challenging....

F

Slot identity and interface naming?

Problem:

- Unlike a real chassis, DDBR does not have physical slot identifiers that can be used in interface naming.
- How do we identify and name interfaces on DDBR LCs.

- User configures a slot number against the serial number for a LC/FC to make it a part of the cluster
- Until this happens LCs and FCs cannot join the cluster and participate in the data path
- Examples:
 - eth5_20 ==> Port 20 on slot 5
 - eth5_20s3 ==> Break out #3 on port 20 on slot 5
 - eth5_20s3_1 ==> Sub-interface 1 on break out #3 on port 20 on slot 5

ifindex allocation problem?

Problem:

- ifindex is allocated by Linux kernel when creating interfaces in kernel
- ifindex is used system-wide to uniquely identify an interface
- In DDBR, there are many Linux kernel instances and interfaces are distributed across many LCs
- How do we ensure a unique system-wide ifindex

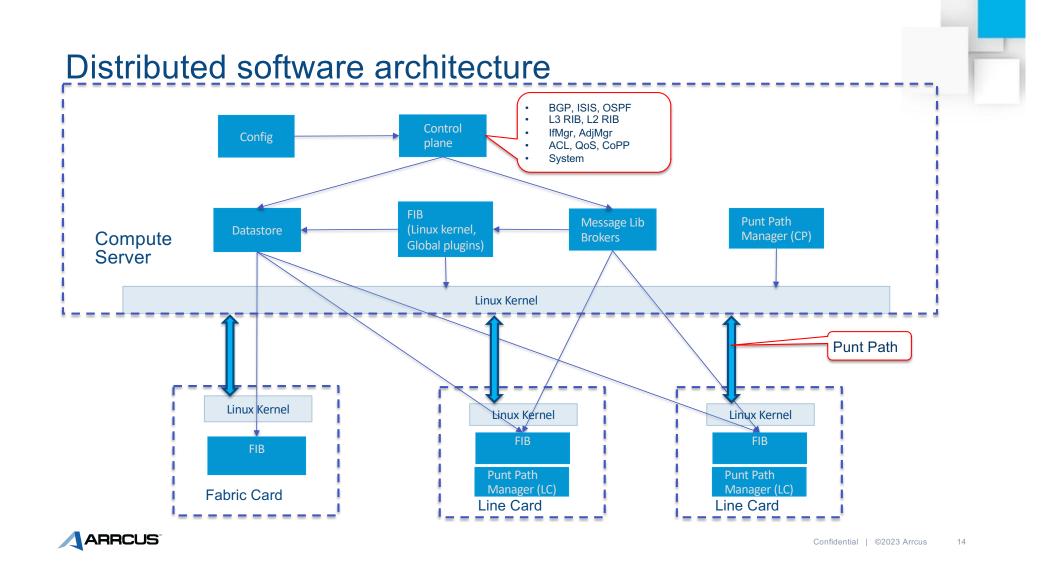
- Move ifindex allocation responsibility to interface manager outside of Linux
- Change ASIC interface handling to accept app provided ifindex
- Entails major rework of interface information flow within the system

Interface discovery and punt path?

Problem:

- How does NOS control plane get to know about interfaces located on LCs
- How does control plane send and receive packets through those interfaces

- As a LC joins the cluster its interfaces are discovered, virtual representations of those interfaces are created on the CS
- A L3 tunnel (i.e., VxLAN) is provisioned between the CS and each LC to transmit and receive packets over these interfaces


How distributing software components?

Problem:

- What software components need to be distributed to LC/FC?
- Does the operating system (i.e, Linux) need to be synced up between LC/FC/CS? If yes, how to sync up?

- In order to simplify the software architecture, only FIB should be distributed to LC/FC
- FIB on CS should manage the entire information and distribute partial information to FIB on LC/FC
- The operating system on CS/LC needs to be synced up because FIB information is needed to handle interfaces, ICMP error, etc...
- The operating system running on CS has the entire FIB. The operating system running on LC has the partial FIB only.

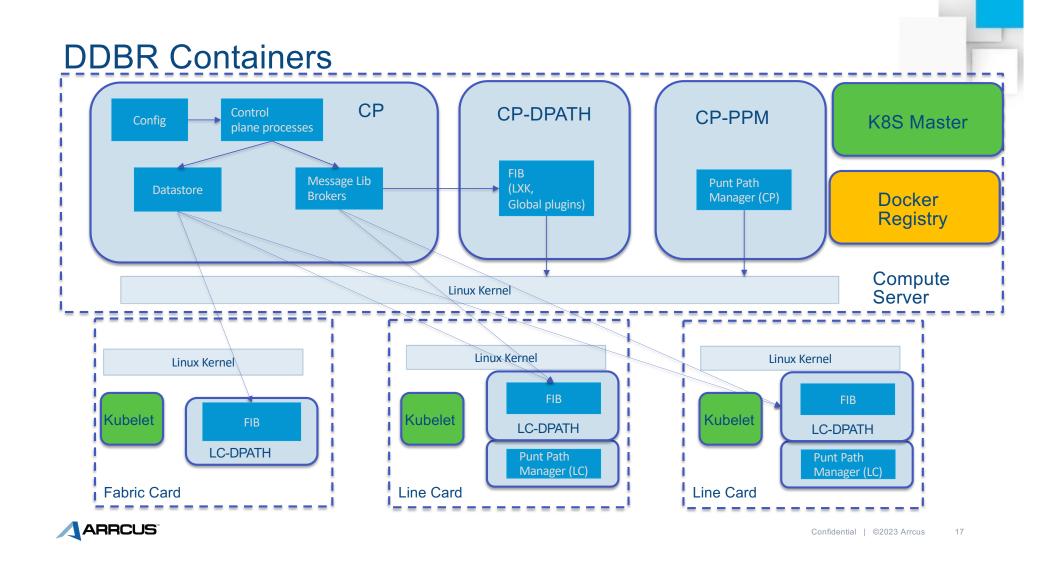
Global identifier problem?

Problem:

- Certain data path identifiers required by ASIC need to be globally scoped.
- ASIC specific
- Traditional solution of piggy backing on top of control plane download sucks
- How do we allocate and distribute such globally scoped, system-wide ASIC specific identifiers

Solution:

- A global FIB that runs on the CS allocates the global identifier.
- A global identifier is distributed to FIB instances running on LC.
- ASIC can accept it?


Runtime orchestration?

Problem:

- How do we download and run the right set of NOS binaries on the appropriate nodes
- How do we run an active and a standby instance of the control plane on the same host to get soft high availability

- Break up NOS into several different container images
- Containers are lightweight and provide enough separation to simulate an entire chassis on a single host
- Choice of several open source orchestration systems to manage and interconnect containers
- Kubernetes (k8s) might be chosen as the orchestration system

F

DDBR Underlay?

Problem:

- ALL nodes need a host OS
- Who does the installation of the host OS
- Who configures the Control Plane Switch (CPS)
- Who assigns node addresses in the control plane network

- DDBR underlay tools collection of tools and scripts that can bootstrap a DDBR cluster from bare metal
- Installs host OS on all nodes, configures the CPS and the node interfaces that connect to it
- Creates ssh keys and login on all nodes for internal access
- Runs NTP between nodes
- Runs an internal DHCP, DNS server, Docker registry service and finally starts off the k8s orchestration services

-

Networking functions supported in the operating system

Problem:

- How to leverage the networking functions in Linux like bridge, lacp, etc
- How to manage the bridge interface among multiple LCs.
- How to manage lacp on LC and/or CS.

- Create the bridge interfaces on multiple LCs and connecting to the path/interface toward to FC.
- Disable lacp on LC and running on lacp on CS only.
- The lacp packets is managed by the punt path manager.
 - It causes some overhead to process lacp packets. Hence, it is difficult to achieve lacp fast.

Summary

- Hardware design for DDBR is securely defined.
- Software design/architecture for DDBR has not been discussed so far...

Need to consider a lot of stuff related to software architecture for DDBR

Require TRY & ERROR approach to verify the architecture.

Take long time for the development

 No open source tools, No operating system suitable for DDBR Need to modify/tweak the existing open source, operating system.

